Classification using Fuzzy Cognitive Maps & Fuzzy Inference System
نویسندگان
چکیده
Fuzzy classification has become very necessary because of its ability to use simple linguistically interpretable rules and has get control over the limitations of symbolic or crisp rule based classifiers. This paper mainly deals with classification on the basis of soft computing techniques Fuzzy cognitive maps and fuzzy inference system. But the data available for classification contain some missing or ambiguous data so it is better to use the Neutrosophic logic for classification.
منابع مشابه
Detection of Breast Cancer Progress Using Adaptive Nero Fuzzy Inference System and Data Mining Techniques
Prediction, diagnosis, recovery and recurrence of the breast cancer among the patients are always one of the most important challenges for explorers and scientists. Nowadays by using of the bioinformatics sciences, these challenges can be eliminated by using of the previous information of patients records. In this paper has been used adaptive nero fuzzy inference system and data mining techniqu...
متن کاملThyroid disorder diagnosis based on Mamdani fuzzy inference system classifier
Introduction: Classification and prediction are two most important applications of statistical methods in the field of medicine. According to this note that the classical classification are provided due to the clinical symptom and do not involve the use of specialized information and knowledge. Therefore, using a classifier that can combine all this information, is necessary. The aim of this s...
متن کاملA Dynamic Temporal Neuro Fuzzy Inference System for Mining Medical Databases
The analysis and representation of temporal data are becoming increasingly important in many areas of research and application. The existing Fuzzy Cognitive Maps (FCMs) are efficient modeling method for knowledge representation and fuzzy reasoning in time series analysis. In the past, it was used to represent a complex causal system as a collection of concepts and causal relationships among con...
متن کاملInference using Binary, Trivalent and Sigmoid Fuzzy Cognitive Maps
In this paper, we compare the inference capabilities of three different types of Fuzzy Cognitive Maps. A Fuzzy Cognitive Map is a Recurrent Artificial Neural Network that creates models as collections of concepts/neurons and the various causal relations that exist between these concepts/neurons. The three different types of Fuzzy Cognitive Maps that we study are the Binary, the Trivalent and th...
متن کاملAdaptive Neuro-Fuzzy Inference System application for hydrothermal alteration mapping using ASTER data
The main problem associated with the traditional approach to image classification for the mapping of hydrothermal alteration is that materials not associated with hydrothermal alteration may be erroneously classified as hydrothermally altered due to the similar spectral properties of altered and unaltered minerals. The major objective of this paper is to investigate the potential of a neuro-fuz...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015